Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Cell Infect Microbiol ; 13: 1155293, 2023.
Article in English | MEDLINE | ID: covidwho-2327276

ABSTRACT

Introduction: The constantly mutating SARS-CoV-2 has been infected an increasing number of people, hence the safe and efficacious treatment are urgently needed to combat the COVID-19 pandemic. Currently, neutralizing antibodies (Nabs), targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are potentially effective therapeutics against COVID-19. As a new form of antibody, bispecific single chain antibodies (BscAbs) can be easily expressed in E. coli and exhibits broad-spectrum antiviral activity. Methods: In this study, we constructed two BscAbs 16-29, 16-3022 and three single chain variable fragments (scFv) S1-16, S2-29 and S3022 as a comparison to explore their antiviral activity against SARS-CoV-2. The affinity of the five antibodies was characterized by ELISA and SPR and the neutralizing activity of them was analyzed using pseudovirus or authentic virus neutralization assay. Bioinformatics and competitive ELISA methods were used to identify different epitopes on RBD. Results: Our results revealed the potent neutralizing activity of two BscAbs 16-29 and 16-3022 against SARS-CoV-2 original strain and Omicron variant infection. In addition, we also found that SARS-CoV RBD-targeted scFv S3022 could play a synergistic role with other SARS-CoV-2 RBD-targeted antibodies to enhance neutralizing activity in the form of a BscAb or in cocktail therapies. Discussion: This innovative approach offers a promising avenue for the development of subsequent antibody therapies against SARSCoV-2. Combining the advantages of cocktails and single-molecule strategies, BscAb therapy has the potential to be developed as an effective immunotherapeutic for clinical use to mitigate the ongoing pandemic.


Subject(s)
COVID-19 , Single-Chain Antibodies , Humans , SARS-CoV-2/genetics , Escherichia coli , Pandemics , Antibodies, Monoclonal , Antibodies, Neutralizing , Single-Chain Antibodies/genetics , Antibodies, Viral/therapeutic use , Antiviral Agents
2.
Viruses ; 15(1)2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2166972

ABSTRACT

The rapid emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in the ongoing global coronavirus disease 2019 (COVID-19) pandemic. Thus, the rapid development of a platform to detect a broad range of SARS-CoV-2 variants is essential for successful COVID-19 management. In this study, four SARS-CoV-2 spike protein-specific single-chain variable fragments (scFvs) were isolated from a synthetic antibody library using phage display technology. Following the conversion of these scFvs into monoclonal antibodies (mAbs) (K104.1-K104.4) and production and purification of the mAbs, the antibody pair (K104.1 and K104.2) that exhibited the highest binding affinity (K104.1 and K104.2, 1.3 nM and 1.9 nM) was selected. Biochemical analyses revealed that this antibody pair specifically bound to different sites on the S2 subunit of the spike protein. Furthermore, we developed a highly sensitive sandwich immunoassay using this antibody pair that accurately and quantitatively detected the spike proteins of wild-type SARS-CoV-2 and multiple variants, including Alpha, Beta, Gamma, Delta, Kappa, and Omicron, in the picomolar range. Conclusively, the novel phage display-derived mAbs we have developed may be useful for the rapid and efficient detection of the fast-evolving SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal , Bacteriophages , SARS-CoV-2 , Single-Chain Antibodies , Humans , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus
3.
Biosensors (Basel) ; 12(12)2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2154895

ABSTRACT

Two years after SARS-CoV-2 caused the first case of COVID-19, we are now in the "new normal" period, where people's activity has bounced back, followed by the easing of travel policy restrictions. The lesson learned is that the wide availability of accurate and rapid testing procedures is crucial to overcome possible outbreaks in the future. Therefore, many laboratories worldwide have been racing to develop a new point-of-care diagnostic test. To aid continuous innovation, we developed a plasmonic-based biosensor designed explicitly for portable Surface Plasmon Resonance (SPR). In this study, we designed a single chain variable fragment (scFv) from the CR3022 antibody with a particular linker that inserted a cysteine residue at the second position. It caused the linker to have a strong affinity to the gold surface through thiol-coupling and possibly become a ready-to-use bioreceptor toward a portable SPR gold chip without purification steps. The theoretical affinity of this scFv on spike protein was -64.7 kcal/mol, computed using the Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method from the 100 ns molecular dynamics trajectory. Furthermore, the scFv was produced in Escherichia coli BL21 (DE3) as a soluble protein. The binding activity toward Spike Receptor Binding Domain (RBD) SARS-CoV-2 was confirmed with a spot-test, and the experimental binding free energy of -10.82 kcal/mol was determined using portable SPR spectroscopy. We hope this study will be useful in designing specific and low-cost bioreceptors, particularly early in an outbreak when the information on antibody capture is still limited.


Subject(s)
Biosensing Techniques , COVID-19 , Single-Chain Antibodies , Humans , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/diagnosis , SARS-CoV-2
4.
Sci Data ; 9(1): 653, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2087256

ABSTRACT

The dataset presented here contains quantitative binding scores of scFv-format antibodies against a SARS-CoV-2 target peptide collected via an AlphaSeq assay that can be used in the development and benchmarking of machine learning models. Starting from three seed sequences identified from a phage display campaign using a human naïve library, four sets of 29,900 antibodies were designed in silico by creating all k = 1 mutations and random k = 2 and k = 3 mutations throughout the complementary-determining regions (CDRs). Of the 119,600 designs, 104,972 were successfully built in to the AlphaSeq library and target binding was subsequently measured with 71,384 designs resulting in a predicted affinity value for at least one of the triplicate measurements. Data include antibodies with predicted affinity measurements ranging from 37 pM to 22 mM. To our knowledge, this dataset is the largest, publicly available dataset that contains antibody sequences, antigen sequence and quantitative measurements of binding scores and provides an opportunity to serve as a benchmark to evaluate antibody-specific representation models for machine learning.


Subject(s)
COVID-19 , Single-Chain Antibodies , Humans , Peptide Library , SARS-CoV-2 , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Antibodies, Viral
5.
Nat Commun ; 13(1): 5814, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2050372

ABSTRACT

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Subject(s)
Antibodies, Bispecific , COVID-19 , Single-Chain Antibodies , Animals , Antibodies, Bispecific/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Cricetinae , Humans , Immunoglobulin G/genetics , Mice , Neutralization Tests , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Anal Chim Acta ; 1229: 340290, 2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-1995928

ABSTRACT

The COVID-19 pandemic has emphasized the need for accurate, rapid, point-of-care diagnostics to control disease transmission. We have developed a simple, ultrasensitive single-particle surface-enhanced Raman spectroscopy (SERS) immunoassay to detect the SARS-CoV-2 spike protein in saliva. This assay relies on the use of single chain Fv (scFv) recombinant antibody expressed in E. coli to bind the SARS-CoV-2 spike protein. Recombinant scFv labeled with a SERS-active dye in solution is mixed with unlabeled scFv conjugated to gold-coated magnetic nanoparticles and a sample to be tested. In the presence of the SARS-CoV-2 spike protein, immunocomplexes form and concentrate the labeled scFv close to the gold surface of the nanoparticles, causing an increased SERS signal. The assay detects inactivated SARS-CoV-2 virus and spike protein in saliva at concentrations of 1.94 × 103 genomes mL-1 and 4.7 fg mL-1, respectively, making this direct detection antigen test only 2-3 times less sensitive than some qRT-PCR tests. All tested SARS-CoV-2 spike proteins, including those from alpha, beta, gamma, delta, and omicron variants, were detected without recognition of the closely related SARS and MERS spike proteins. This 30 min, no-wash assay requires only mixing, a magnetic separation step, and signal measurements using a hand-held, battery-powered Raman spectrometer, making this assay ideal for ultrasensitive detection of the SARS-CoV-2 virus at the point-of-care.


Subject(s)
COVID-19 , Single-Chain Antibodies , COVID-19/diagnosis , Escherichia coli , Gold , Humans , Immunoassay , Pandemics , SARS-CoV-2 , Saliva/chemistry , Spike Glycoprotein, Coronavirus
7.
Bioengineered ; 13(5): 12598-12624, 2022 05.
Article in English | MEDLINE | ID: covidwho-1860758

ABSTRACT

Here, we describe the isolation of 18 unique anti SARS-CoV-2 human single-chain antibodies from an antibody library derived from healthy donors. The selection used a combination of phage and yeast display technologies and included counter-selection strategies meant to direct the selection of the receptor-binding motif (RBM) of SARS-CoV-2 spike protein's receptor binding domain (RBD2). Selected antibodies were characterized in various formats including IgG, using flow cytometry, ELISA, high throughput SPR, and fluorescence microscopy. We report antibodies' RBD2 recognition specificity, binding affinity, and epitope diversity, as well as ability to block RBD2 binding to the human receptor angiotensin-converting enzyme 2 (ACE2) and to neutralize authentic SARS-CoV-2 virus infection in vitro. We present evidence supporting that: 1) most of our antibodies (16 out of 18) selectively recognize RBD2; 2) the best performing 8 antibodies target eight different epitopes of RBD2; 3) one of the pairs tested in sandwich assays detects RBD2 with sub-picomolar sensitivity; and 4) two antibody pairs inhibit SARS-CoV-2 infection at low nanomolar half neutralization titers. Based on these results, we conclude that our antibodies have high potential for therapeutic and diagnostic applications. Importantly, our results indicate that readily available non immune (naïve) antibody libraries obtained from healthy donors can be used to select high-quality monoclonal antibodies, bypassing the need for blood of infected patients, and offering a widely accessible and low-cost alternative to more sophisticated and expensive antibody selection approaches (e.g. single B cell analysis and natural evolution in humanized mice).


Subject(s)
Antibodies, Viral , COVID-19 , Single-Chain Antibodies , Antibodies, Neutralizing , COVID-19/immunology , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
8.
Viruses ; 14(4)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1810315

ABSTRACT

Porcine deltacoronavirus (PDCoV) mainly causes severe diarrhea and intestinal pathological damage in piglets and poses a serious threat to pig farms. Currently, no effective reagents or vaccines are available to control PDCoV infection. Single-chain fragment variable (scFv) antibodies can effectively inhibit virus infection and may be a potential therapeutic reagent for PDCoV treatment. In this study, a porcine phage display antibody library from the peripheral blood lymphocytes of piglets infected with PDCoV was constructed and used to select PDCoV-specific scFv. The library was screened with four rounds of biopanning using the PDCoV N protein, and the colony with the highest affinity to the PDCoV N protein was obtained (namely, N53). Then, the N53-scFv gene fragment was cloned into plasmid pFUSE-hIgG-Fc2 and expressed in HEK-293T cells. The scFv-Fc antibody N53 (namely, scFv N53) was purified using Protein A-sepharose. The reactive activity of the purified antibody with the PDCoV N protein was confirmed by indirect enzyme-linked immunosorbent assay (ELISA), western blot and indirect immunofluorescence assay (IFA). Finally, the antigenic epitopes that the scFv N53 recognized were identified by a series of truncated PDCoV N proteins. The amino acid residues 82GELPPNDTPATTRVT96 of the PDCoV N protein were verified as the minimal epitope that can be recognized by the scFv-Fc antibody N53. In addition, the interaction between the scFv-Fc antibody N53 and the PDCoV N protein was further analyzed by molecule docking. In conclusion, our research provides some references for the treatment and prevention of PDCoV.


Subject(s)
Bacteriophages , Coronavirus Infections , Single-Chain Antibodies , Swine Diseases , Animals , Antibodies, Viral , Deltacoronavirus , Epitopes , Nucleocapsid Proteins/genetics , Single-Chain Antibodies/genetics , Swine , Technology
9.
ACS Sens ; 7(3): 866-873, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1735187

ABSTRACT

Rapid, sensitive, on-site identification of SARS-CoV-2 infections is an important tool in the control and management of COVID-19. We have developed a surface-enhanced Raman scattering (SERS) immunoassay for highly sensitive detection of SARS-CoV-2. Single-chain Fv (scFv) recombinant antibody fragments that bind the SARS-CoV-2 spike protein were isolated by biopanning a human scFv library. ScFvs were conjugated to magnetic nanoparticles and SERS nanotags, followed by immunocomplex formation and detection of the SARS-CoV-2 spike protein with a limit of detection of 257 fg/mL in 30 min in viral transport medium. The assay also detected B.1.1.7 ("alpha"), B.1.351 ("beta"), and B.1.617.2 ("delta") spike proteins, while no cross-reactivity was observed with the common human coronavirus HKU1 spike protein. Inactivated whole SARS-CoV-2 virus was detected at 4.1 × 104 genomes/mL, which was 10-100-fold lower than virus loads typical of infectious individuals. The assay exhibited higher sensitivity for SARS-CoV-2 than commercial lateral flow assays, was compatible with viral transport media and saliva, enabled rapid pivoting to detect new virus variants, and facilitated highly sensitive, point-of-care diagnosis of COVID-19 in clinical and public health settings.


Subject(s)
COVID-19 , Point-of-Care Systems , SARS-CoV-2/isolation & purification , Single-Chain Antibodies , COVID-19/diagnosis , Humans , Spike Glycoprotein, Coronavirus
10.
Nat Commun ; 13(1): 462, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1650125

ABSTRACT

As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Affinity/immunology , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Neutralization Tests/methods , Pandemics , Peptide Library , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
11.
Mol Immunol ; 141: 287-296, 2022 01.
Article in English | MEDLINE | ID: covidwho-1559780

ABSTRACT

As the second wave of COVID-19 launched, various variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have emerged with a dramatic global spread amongst millions of people causing unprecedented case fatalities and economic shut-downs. That initiated a necessity for developing specific diagnostics and therapeutics along with vaccines to control such a pandemic. This endeavor describes generation of murine derived recombinant single-chain fragment variable (scFv) as a monoclonal antibody (MAb) platform targeting the receptor binding domain (RBD) of Spike protein of SARS-CoV-2. A specific synthesized RBD coding sequence was cloned and expressed in Baculovirus expression system. The recombinant RBD (rRBD) was ascertained to be at the proper encoding size of ∼ 600bp and expressed protein of the molecular weight of ∼ 21KDa. Purified rRBD was proved genuinely antigenic and immunogenic, exhibiting specific reactivity to anti-SARS-CoV-2 antibody in an indirect enzyme-linked immunosorbent assay (ELISA), and inducing strong seroconversion in immunized mice. The scFv phage display library against rRBD was successfully constructed, revealing ∼ 90 % recombination frequency, and great enriching factor reaching 88 % and 25 % in polyclonal Ab-based and MAb-based ELISAs, respectively. Typically, three unique scFvs were generated, selected, purified and molecularly identified. That was manifested by their: accurate structure, close relation to the mouse immunoglobulin (Ig) superfamily, right anchored six complementarily-determining regions (CDRs) as three within variable heavy (vH) and variable light (vL) regions each, and proper configuration of the three-dimensional (3D) structure. Besides, their expression downstream in a non-suppressive amber codon of E. coli strain SS32 created a distinct protein band at an apparent molecular weight of ∼ 27KDa. Moreover, the purified scFvs showed authentic immunoreactivity and specificity to both rRBD and SARS-CoV-2 in western blot and ELISA. Accordingly, these developed scFvs platform might be a functional candidate for research, inexpensive diagnostics and therapeutics, mitigating spread of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/diagnosis , Cell Surface Display Techniques , Epitopes/immunology , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/blood , Antibody Specificity , Baculoviridae , COVID-19/prevention & control , Escherichia coli , Female , Genetic Vectors , Mice , Mice, Inbred BALB C , Models, Molecular , Peptide Library , Protein Conformation , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Single-Chain Antibodies/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Signal Transduct Target Ther ; 6(1): 378, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500450

ABSTRACT

The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19 , SARS-CoV-2/chemistry , Single-Chain Antibodies/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Mice , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/therapeutic use
13.
MAbs ; 13(1): 1987180, 2021.
Article in English | MEDLINE | ID: covidwho-1483313

ABSTRACT

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Subject(s)
Antibodies, Viral , COVID-19 Drug Treatment , Receptors, Polymeric Immunoglobulin , SARS-CoV-2/immunology , Single-Chain Antibodies , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , CHO Cells , COVID-19/genetics , COVID-19/immunology , Cricetulus , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mouth Mucosa/immunology , Protein Domains , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/therapeutic use , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Swine
15.
Cell Res ; 31(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: covidwho-1387275

ABSTRACT

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Disease Models, Animal , Humans , Single-Chain Antibodies/pharmacology , Vero Cells
16.
J Phys Chem Lett ; 12(5): 1438-1442, 2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1387118

ABSTRACT

The dramatic impact novel viruses can have on humans could be more quickly mitigated if generic antibodies already present in one's system are temporarily retrained to recognize these viruses. This type of intervention can be administered during the early stages of infection, while a specific immune response is being developed. With this idea in mind, double-faced peptide-based boosters were computationally designed to allow recognition of SARS-CoV-2 by Hepatitis B antibodies. One booster face is made of ACE2-mimic peptides that can bind to the receptor binding domain (RBD) of SARS-CoV-2. The other booster face is composed of a Hepatitis B core-antigen, targeting the Hepatitis B antibody fragment. Molecular dynamics simulations revealed that the designed boosters have a highly specific and stable binding to both the RBD and the antibody fragment (AF). This approach can provide a cheap and efficient neutralization of emerging pathogens.


Subject(s)
Hepatitis B Antibodies/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Humans , Immunoglobulin Fragments/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Protein Conformation , Single-Chain Antibodies/chemistry , Thermodynamics
17.
N Biotechnol ; 62: 79-85, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1386359

ABSTRACT

A phage library displaying 1010 variants of the fibronectin type III (FN3) domain was affinity selected with the biotinylated form of the receptor binding domain (RBD, residues 319-541) of the SARS-CoV-2 virus spike protein. Nine binding FN3 variants (i.e. monobodies) were recovered, representing four different primary structures. Soluble forms of the monobodies bound to several different preparations of the RBD and the S1 spike subunit, with affinities ranging from 3 to 14 nM as measured by bio-layer interferometry. Three of the four monobodies bound selectively to the RBD of SARS-CoV-2, with the fourth monobody showing slight cross-reactivity to the RBD of SARS-CoV-1 virus. Examination of binding to the spike fragments and its trimeric form revealed that the monobodies recognise at least three overlapping epitopes on the RBD of SARS-CoV-2. While pairwise tests failed to identify a monobody pair that could bind simultaneously to the RBD, one monobody could simultaneously bind to the RBD with the ectodomain of the cellular receptor angiotensin converting enzyme 2 (ACE2). All four monobodies successfully bound the RBD after overexpression in Chinese hamster ovary (CHO) cells as fusions to the Fc domain of human IgG1.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibody Specificity , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Cell Line , Cross Reactions , Humans , Protein Domains
18.
Biochem Pharmacol ; 192: 114724, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347499

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread around the globe. At present, there is no precise and effective treatment for the patients with COVID-19, so rapid development of drugs is urgently needed in order to contain the highly infectious disease. The virus spike protein (S protein) can recognize the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane and undergo a series of conformational changes, protease cleavage and membrane fusion to complete the virus entry, so S protein is an important target for vaccine and drug development. Here we provide a brief overview of molecular mechanisms of virus entry, as well as some potential antiviral agents that act on S/ACE2 protein-protein interaction. Specifically, we focused on experimentally validated and/or computational prediction identified inhibitors that target SARS-CoV-2 S protein, ACE2 and enzymes associated with viral infection. This review offers valuable information for the discovery and development of potential antiviral agents in combating SARS-CoV-2. In addition, with the deepening understanding of the mechanism of SARS-CoV-2 infection, more targeted prevention and treatment drugs will be explored with the aid of the advanced technology in the future.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/administration & dosage , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , COVID-19/immunology , COVID-19/metabolism , COVID-19/prevention & control , Glycyrrhetinic Acid/administration & dosage , Humans , Protein Binding/drug effects , Protein Binding/physiology , SARS-CoV-2/immunology , Single-Chain Antibodies/administration & dosage , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/immunology
19.
Mol Biotechnol ; 63(12): 1223-1234, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1321871

ABSTRACT

COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Antibody Affinity , Baculoviridae/genetics , Baculoviridae/immunology , Biotechnology , Bombyx/genetics , Bombyx/immunology , Cells, Cultured , Gene Expression , Hemolymph/immunology , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , SARS-CoV-2/genetics , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
PLoS One ; 16(7): e0253364, 2021.
Article in English | MEDLINE | ID: covidwho-1315884

ABSTRACT

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Subject(s)
Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Single-Chain Antibodies/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Antigen-Antibody Complex , Humans , Inhibitory Concentration 50 , RNA-Dependent RNA Polymerase/immunology , RNA-Dependent RNA Polymerase/metabolism , Single-Chain Antibodies/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL